
Chapter 4 
Cache Memory 

 

Computer Organization and Architecture 

 William Stallings  

8th Edition 



Memory subsystem 

 

• Typical computer system is equipped with a hierarchy of 

memory subsystems, some internal to the system (directly 

accessible by the processor) and some external (accessible 

by the processor via an I/O module). 



Characteristics 

• Location 

• Capacity 

• Unit of transfer 

• Access method 

• Performance 

• Physical type 

• Physical characteristics 

• Organisation 



 



Location 
• Memory is internal and external to the computer. 

 

• Internal memory: 

1. Internal memory is often equated with main memory. 

2. The processor requires its own local memory, in the   

  form of registers. 

3. Cache is another form of internal memory.  

 

• External memory 

▫ External memory consists of peripheral storage devices, 

such as disk and tape, that are accessible to the processor 

via I/O controllers. 



Capacity 

• Word size 

• The natural unit of organisation. 

• Number of Bytes 

 

• For internal memory, this is typically expressed in terms of 

bytes (1 byte 8 bits) or words. Common word lengths are 

8, 16, and 32 bits.  

  

• External memory capacity is typically expressed in terms 

of bytes. 



Unit of Transfer 

• For internal memory, the unit of transfer is equal to the 

number of electrical lines into and out of the memory 

module. 

 

• This may be equal to the word length, but is often larger, 

such as 64, 128, or 256 bits.  

 

• There is a three related concepts for internal memory: 



1. Word 

▫ It is the “natural” unit of organization of memory.  

▫ The size of the word is typically equal to the number of 

bits used to represent an integer and to the instruction 

length. 

 

2. Addressable units 

▫ In some systems, the addressable unit is the word.  

▫ The relationship between the length in bits A of an 

address and the number N of addressable units is:  

  2A = N 



3. Unit of transfer 

▫ For main memory, this is the number of bits read out of or 

written into memory at a time.  

 

▫ For external memory, data are often transferred in much 

larger units than a word, and these are referred to as blocks. 



Unit of Transfer 

• Internal 

▫ Usually governed by data bus width. 

 

• External 

▫ Usually a block which is much larger than a word. 

 

• Addressable unit 

▫ Smallest location which can be uniquely addressed. 

▫ Word internally. 



Method of Accessing  

1. Sequential access 

▫ Memory is organized into units of data, called records.  

▫ Access must be made in a specific linear sequence. 

▫ Start at the beginning and read through in order. 

▫ Stored addressing information is used to separate records 

and assist in the retrieval process.  

▫ A shared read–write mechanism is used, and this must be 

moved from its current location to the desired location, 

passing and rejecting each intermediate record. 

▫ Access time depends on location of data and previous 

location. 

▫ e.g. Tape. 

 



Method of Accessing  

2. Direct access 

▫ Direct access involves a shared read–write mechanism. 

▫ Individual blocks or records have a unique address based on 

physical location. 

▫ Access is by jumping to vicinity plus sequential search. 

▫ Access time depends on location and previous location. 

▫ e.g. Disk. 





3. Random access 

▫ Individual addresses identify locations exactly. 

▫ Access time is independent of location or previous access. 

▫ The time to access a given location is independent of the 

sequence of prior accesses and is constant. 

▫ Any location can be selected at random and directly 

addressed and accessed.  

▫ Main memory and some cache systems are random access. 

▫ e.g. RAM. 

Method of Accessing  



4. Associative  

▫ This is a random access type of memory that enables one 

to make a comparison of desired bit locations within a 

word for a specified match, and to do this for all words 

simultaneously.  

▫ A word is retrieved based on a portion of its contents rather 

than its address. 

▫ Data is located by a comparison with contents of a portion 

of the store. 

▫ Access time is independent of location or previous access. 

▫ e.g. Cache. 

Method of Accessing  



Performance 

• The two most important characteristics of memory are 

capacity and performance.  

 

• Three performance parameters are used: 

▫ Access time (latency). 

▫ Memory cycle time. 

▫ Transfer rate. 



Performance 

• Access time 

▫ Time between presenting the address and getting 
the valid data. 

• Memory Cycle time 

▫ Time may be required for the memory to “recover” 
before next access. 

▫ Cycle time is access + recovery. 

• Transfer Rate 

▫ Rate at which data can be moved. 



1. Access time (latency) 

▫ For random-access memory: 

 It is the time it takes to perform a read or write operation. 

 

 Also, it is the time from the instant that an address is presented 

to the memory to the instant that data have been stored or made 

available for use. 

  

▫ For non-random-access memory: 

 Access time is the time it takes to position the read–write 

mechanism at the desired location. 



2. Memory cycle time 

• It is applied to random-access memory and consists of 

the access time plus any additional time required before a 

second access can commence.  

 

• Note that memory cycle time is concerned with the 

system bus, not the processor. 

 

   



3. Transfer rate 

• It is the rate at which data can be transferred into or out 

of a memory unit.  

• For random-access memory, it is equal to 1/(cycle time). 

• For non-random-access memory, the following 

relationship holds: 

  TN = TA + n/R 
where 

TN   Average time to read or write N bits 

TA   Average access time 

n      Number of bits 

R     Transfer rate, in bits per second (bps) 



Physical Types 

• The most common today are semiconductor memory, 

magnetic surface memory (used for disk and tape), 

and optical and magneto-optical. 



Physical Types 

• Semiconductor 

▫ RAM 

• Magnetic 

▫ Disk & Tape 

• Optical 

▫ CD & DVD 

• Others 

▫ Bubble 

▫ Hologram 



Physical Characteristics 

• Decay 

• Volatility 

• Erasable 

• Power consumption 

 



Physical Characteristics 

• In a volatile memory 

▫ Information decays naturally or is lost when electrical power 

is switched off. 

 

• In a nonvolatile memory 

▫ Information once recorded remains without deterioration 

until deliberately changed; no electrical power is needed to 

retain information. 

 

• Magnetic-surface memories are nonvolatile.  

• Semiconductor memory may be either volatile or 

nonvolatile.  



Physical Characteristics 

• Nonerasable memory 

▫ It cannot be altered, except by destroying the storage unit.  

 

• Semiconductor memory of this type is known as read-only 

memory (ROM).  

 

• A practical nonerasable memory must also be nonvolatile. 



Organisation 

• Physical arrangement of bits into words. 

• Not always obvious. 

• e.g. Interleaved. 



Memory Hierarchy 

• Registers 

▫ In CPU. 

• Internal or Main memory 

▫ May include one or more levels of cache. 

▫ “RAM”. 

• External memory 

▫ Backing store. 



Memory Hierarchy - Diagram 



The Memory Hierachy 

• The design constraints on a computer’s memory can be 

summed up by three questions: 

 How much? How fast? How expensive? 

▫ How much? 

 Capacity. 

▫ How fast? 

 Time is money. 

▫ How expensive? 

 Cost. 

• To achieve greatest performance, the memory must be 

able to keep up with the processor. 

 

 



• A variety of technologies are used to implement memory 

systems, and across this spectrum of technologies, the 

following relationships hold: 

▫ Faster access time, greater cost per bit. 

▫ Greater capacity, smaller cost per bit. 

▫ Greater capacity, slower access time. 

 

• As one goes down the hierarchy such as in figure 4.1, the 

following occur: 

▫ a. Decreasing cost per bit. 

▫ b. Increasing capacity. 

▫ c. Increasing access time. 

▫ d.Decreasing frequency of access of the memory by the processor. 



Hierarchy List 

• Registers 

• L1 Cache 

• L2 Cache 

• Main memory 

• Disk cache 

• Disk 

• Optical 

• Tape 



So you want fast? 

• It is possible to build a computer which uses only 

static RAM (see later). 

• This would be very fast. 

• This would need no cache. 

▫ How can you cache cache? 

• This would cost a very large amount. 

 



• Thus, smaller, more expensive, faster memories are 

supplemented by larger, cheaper, slower memories. The 

key to the success of this organization is item (d): 

decreasing frequency of access.  

 

• If the accessed word is found in the faster memory, that 

is defined as a hit. 

 

• A miss occurs if the accessed word is not found in the 

faster memory. 



• Locality of Reference 

▫ During the course of the execution of a program, memory 

references tend to cluster. 

▫ e.g. Loops. 

 

• The use of two levels of memory to reduce average 

access time works in principle, but only if conditions (a) 

through (d) apply. 

 



• The fastest, smallest, and most expensive type of memory 

consists of the registers internal to the processor. 

 

• Skipping down two levels, main memory is the principal 

internal memory system of the computer. Each location in 

main memory has a unique address.  

 

• Main memory is usually extended with a higher-speed, 

smaller cache.  

 

• The cache is not usually visible to the programmer or, indeed, 

to the processor. It is a device for staging the movement of 

data between main memory and processor registers to 

improve performance. 



• The three forms of memory just described are, typically, 

volatile and employ semiconductor technology. 

 

• The semiconductor memory comes in a variety of types, 

which differ in speed and cost.  

 

• External, nonvolatile memory is also referred to as secondary 

memory or auxiliary memory. These are used to store 

program and data files and are usually visible to the 

programmer only in terms of files and records, as opposed to 

individual bytes or words. Disk is also used to provide an 

extension to main memory known as virtual memory. 



• Data are stored more permanently on external mass storage 

devices, of which the most common are hard disk and 

removable media, such as removable magnetic disk, tape, and 

optical storage.  

 

• Other forms of secondary memory include optical and magneto-

optical disks. 

 

• A portion of main memory can be used as a buffer to hold data 

temporarily that is to be read out to disk. Such a technique, 

sometimes referred to as a disk cache. 



 

• To improves performance in two ways: 

 

1. Disk writes are clustered. Instead of many small transfers of 

data, we have a few large transfers of data. This improves 

disk performance and minimizes processor involvement. 

 

2. Some data destined for write-out may be referenced by a 

program before the next dump to disk. In that case, the 

data are retrieved rapidly from the software cache rather 

than slowly from the disk. 



CACHE MEMORY PRINCIPLES 

• Small amount of fast memory. 

• Sits between normal main memory and CPU. 

• May be located on CPU chip or module. 

 



• Cache memory is intended to give memory speed 
approaching that of the fastest memories available, 
and at the same time provide a large memory size 
at the price of less expensive types of 
semiconductor memories.   

 

• In next figure, there is a relatively large and slow 
main memory together with a smaller, faster cache 
memory.   

 

• The cache contains a copy of portions of main 
memory. 



• When the processor attempts to read a word of memory, a 

check is made to determine if the word is in the cache.  

 

• If so, the word is delivered to the processor.  

 

• If not, a block of main memory, consisting of some fixed 

number of words, is read into the cache and then the 

word is delivered to the processor.  

 

• There is multiple levels of cache. The L2 cache is slower 

and typically larger than the L1 cache, and the L3 cache 

is slower and typically larger than the L2 cache.  



Cache and Main Memory 



Cache/Main Memory Structure 



• Main memory consists of up to 2n addressable words, with 
each word having a unique n-bit address. 

• For mapping purposes, this memory is considered to consist of 
a number of fixed length blocks of K words each. 

• There are M=2n/K blocks in main memory. 

 

• The cache consists of m blocks, called lines. 

• Each line contains K words, plus a tag of a few bits. Each line 
also includes control bits (not shown), such as a bit to indicate 
whether the line has been modified since being loaded into the 
cache.  

• The length of a line, not including tag and control bits, is the 
line size.  

• The line size may be as small as 32 bits, with each “word” 
being a single byte; in this case the line size is 4 bytes. 



• The number of lines is considerably less than the number of 

main memory blocks (m<<M).  

 

• If a word in a block of memory is read, that block is 

transferred to one of the lines of the cache. Because there are 

more blocks than lines, an individual line cannot be uniquely 

and permanently dedicated to a particular block. Thus, each 

line includes a tag that identifies which particular block is 

currently being stored.  

 

• The tag is usually a portion of the main memory address. 



Cache operation – overview 

• CPU requests contents of memory location. 

• Check cache for this data. 

• If present, get from cache (fast). 

• If not present, read required block from main memory to 

cache. 

• Then deliver from cache to CPU. 

• Cache includes tags to identify which block of main memory 

is in each cache slot. 

• RA is referred to the read address of a word to be read. 



Cache Read Operation - Flowchart 



Typical Cache Organization 



• The processor generates the read address (RA) of a word to be 

read.  

• If the word is contained in the cache, it is delivered to the 

processor.  

• Otherwise, the block containing that word is loaded into the 

cache, and the word is delivered to the processor. 

• The cache connects to the processor via data, control, and 

address lines. The data and address lines also attach to data 

and address buffers, which attach to a system bus from which 

main memory is reached. 

• When a cache hit occurs, the data and address buffers are 

disabled and communication is only between processor and 

cache, with no system bus traffic. 



 

• When a cache miss occurs, the desired address is loaded onto 

the system bus and the data are returned through the data 

buffer to both the cache and the processor. 

 

• For a cache miss, the desired word is first read into the cache 

and then transferred from cache to processor. 





Elements of Cache Design 

• Addressing 

• Size 

• Mapping Function 

• Replacement Algorithm 

• Write Policy 

• Block Size 

• Number of Caches 



Cache Addresses 

• Virtual memory is a facility that allows programs to address 

memory from a logical point of view, without regard to the 

amount of main memory physically available. 

 

• When virtual memory is used, the address fields of machine 

instructions contain virtual addresses. For reads to and writes 

from main memory, a hardware memory management unit 

(MMU) translates each virtual address into a physical address 

in main memory. 

 

• When virtual addresses are used, the system designer may 

choose to place the cache between the processor and the 

MMU or between the MMU and main memory. 





• A logical cache, also known as a virtual cache, stores data 

using virtual addresses.  

 

• The processor accesses the cache directly, without going 

through the MMU. 

 

• A physical cache stores data using main memory physical 

addresses. 



Advantage/ disadvantage  

of logical cache (Virtual cache) 

 

• Advantage: 

▫ The logical cache is that cache access speed is faster than for a 

physical cache, because the cache can respond before the MMU 

performs an address translation. 



Advantage/ disadvantage  

of logical cache (Virtual cache) 

• Disadvantage: 

▫ Most virtual memory systems supply each application with the 

same virtual memory address space.  

▫ That is, each application sees a virtual memory that starts at 

address 0.  

▫ Thus, the same virtual address in two different applications 

refers to two different physical addresses. 

▫ The cache memory must therefore be completely flushed with 

each application context switch, or extra bits must be added to 

each line of the cache to identify which virtual address space 

this address refers to. 



Cache Size 

 • We would like the size of the cache to be small enough so that 

the overall average cost per bit is close to that of main 

memory alone, and large enough so that the overall average 

access time is close to that of the cache alone. 

 

• There are several other motivations for minimizing cache 

size: 

▫ The larger the cache, the larger the number of gates involved in 

addressing the cache. The result is that large caches tend to 

be slightly slower than small ones even when built with the 

same integrated circuit technology and put in the same place 

on chip and circuit board. 



Cache Size 

  

 

• There are several other motivations for minimizing cache 

size: 

▫ The available chip and board area also limits cache size. Because 

the performance of the cache is very sensitive to the nature of 

the workload, it is impossible to arrive at a single “optimum” 

cache size. 

 



Comparison of Cache Sizes 
Processor Type 

Year of 

Introduction 
L1 cache L2 cache L3 cache 

IBM 360/85 Mainframe 1968 16 to 32 KB — — 

PDP-11/70 Minicomputer 1975 1 KB — — 

VAX 11/780 Minicomputer 1978 16 KB — — 

IBM 3033 Mainframe 1978 64 KB — — 

IBM 3090 Mainframe 1985 128 to 256 KB — — 

Intel 80486 PC 1989 8 KB — — 

Pentium PC 1993 8 KB/8 KB 256 to 512 KB — 

PowerPC 601 PC 1993 32 KB — — 

PowerPC 620 PC 1996 32 KB/32 KB — — 

PowerPC G4 PC/server 1999 32 KB/32 KB 256 KB to 1 MB 2 MB 

IBM S/390 G4 Mainframe 1997 32 KB 256 KB 2 MB 

IBM S/390 G6 Mainframe 1999 256 KB 8 MB — 

Pentium 4 PC/server 2000 8 KB/8 KB 256 KB — 

IBM SP 
High-end server/ 

supercomputer 
2000 64 KB/32 KB 8 MB — 

CRAY MTAb Supercomputer 2000 8 KB 2 MB — 

Itanium PC/server 2001 16 KB/16 KB 96 KB 4 MB 

SGI Origin 2001 High-end server 2001 32 KB/32 KB 4 MB — 

Itanium 2 PC/server 2002 32 KB 256 KB 6 MB 

IBM POWER5 High-end server 2003 64 KB 1.9 MB 36 MB 

CRAY XD-1 Supercomputer 2004 64 KB/64 KB 1MB — 



Mapping Function 

• Because there are fewer cache lines than main 
memory blocks, an algorithm is needed for mapping 

main memory blocks into cache lines.  

 

• Further, a means is needed for determining which main 

memory block currently occupies a cache line. 

 

• The choice of the mapping function dictates how the 

cache is organized. Three techniques can be used: direct, 

associative, and set associative. 



Mapping Function 

• Example 4.2 For all three cases, the example includes the 

following elements: 

 

• The cache can hold 64 KBytes. 

• Data are transferred between main memory and the cache in 

blocks of 4 bytes each. 

• The cache is organized as 16K = 214 lines of 4 bytes each. 

• The main memory consists of 16 Mbytes, with each byte 

directly addressable by a 24-bit address (224 =16M). 

• Thus, for mapping purposes, we can consider main memory 

  to consist of 4M blocks of 4 bytes each. 



Mapping Function 

• Therefore, for example 4.2: 

• Cache of 64kByte. 

• Cache block of 4 bytes. 

▫ i.e. cache is 16k (214) lines of 4 bytes. 

• 16MBytes main memory. 

• 24 bit address. 

▫ (224=16M). 



Direct Mapping 
• It is the simplest technique which maps each block of main 

memory into only one possible cache line.  

• The mapping is expressed as: 

i = j modulo m 

 where 

  i: cache line number 

  j: main memory block number 

  m: number of lines in the cache 

 

• Each block of main memory maps into one unique line of the 

cache. The next blocks of main memory map into the cache in 

the same fashion; that is, block Bm of main memory maps into 

line L0 of cache, block Bm1 maps into line L1, and so on. 



Direct Mapping 

• The mapping function is easily implemented using the main 

memory address. 

 

• Each block of main memory maps to only one cache line 

▫ i.e. if a block is in cache, it must be in one specific place. 

 

• Memory address is viewed as two parts: 

▫ Least Significant w bits is to identify a unique word. 

▫ Most Significant (MSBs) s bits is to specify one memory 

block. The MSBs are split into a cache line field r and a tag 

of s-r (most significant). 

 



Direct Mapping Memory Address Structure 

• 24 bit memory address. 

• 2 bit word identifier (4 byte block). 

• 22 bit block identifier. 

▫ 8 bit tag (=22-14). 

▫ 14 bit slot or line. 

• No two blocks in the same line have the same Tag field. 

• Check contents of cache by finding line and checking Tag. 

Tag s-r Line or Slot  r Word w 

8-bit 14-bit 2-bit 



 

• To summarize it: 

▫ Address length = (s + w) bits. 

▫ Number of addressable units = 2s + w words or bytes. 

▫ Block size = line size = 2w words or bytes. 

▫ Number of blocks in main memory = 2s+w /2w = 2s 

▫ Number of lines in cache = m = 2r 

▫ Size of cache = 2r+w words or bytes. 

▫ Size of tag = (s - r) bits. 

Direct Mapping Summary 



Direct Mapping from Cache to Main Memory 



Direct Mapping Cache Line Table 

Cache line Main Memory blocks assigned 

0 0, m, 2m, 3m…2s-m 

 

1 1,m+1, 2m+1…2s-m+1 

 

… 

m-1 m-1, 2m-1,3m-1…2s-1 

 



• Thus, the use of a portion of the address as a line number 

provides a unique mapping of each block of main memory 

into the cache. 

 

• When a block is actually read into its assigned line, it is 

necessary to tag the data to distinguish it from other blocks 

that can fit into that line. The most significant s – r bits serve 

this purpose. 



Direct Mapping Cache Organization 



 



Direct Mapping Example 



Direct Mapping pros & cons 

• Advantages: 

▫ Simple. 

▫ Inexpensive. 

 

• Disadvantage: 

▫ Fixed cache location for given block. If a program 
accesses 2 blocks that map to the same line repeatedly, 
cache misses are very high which is called thrashing. 

 



Victim Cache 

• One approach to lower the miss penalty is to remember 

what was discarded in case it is needed again. Since the 

discarded data has already been fetched, it can be used 

again at a small cost.  

• Such recycling is possible using a victim cache. 

• Victim cache is an approach to reduce the conflict misses 

of direct mapped caches without affecting its fast access 

time. 

• Victim cache is a fully associative cache, whose size is 

typically 4 to 16 cache lines, residing between a direct 

mapped L1 cache and the next level of memory 



Associative Mapping 

• A main memory block can load into any line of 
cache. 

• The cache control logic interprets a memory 
address simply as a Tag and a Word field.  

• The Tag field uniquely identifies a block of 

• main memory. 

• Every line’s tag is examined for a match. 

• Cache searching gets expensive. 

 



Associative Mapping from Cache to Main 

Memory 



• To summarize: 

▫ Address length = (s + w) bits 

▫ Number of addressable units = 2s+w words or bytes 

▫ Block size = line size = 2w words or bytes 

▫ Number of blocks in main memory = 2s+w / 2w = 2s 

▫ Number of lines in cache = undetermined 

▫ Size of tag = s bits 

 

Associative Mapping Summary 



Fully Associative Cache Organization 





Associative Mapping Example 



Tag   22 bit 
Word 

2 bit 

Associative Mapping Address Structure 

• 22 bit tag stored with each 32 bit block of data of cache. 

• Compare tag field with tag entry in cache to check for hit. 

• Least significant 2 bits of address identify which 16 bit 
word is required from 32 bit data block. 

• e.g. 
▫ Address  Tag  Data  Cache line 

    FFFFFC            FFFFFC              24682468                    3FFF 



• Address = 0001 0110 0011 0011 1001 1100 

                  1        6        3       3      9       C  

  

• Tag =         0000 0101 1000 1100 1110 0111 

                   0        5        8       C      E       7  

 

• Data = FEDCBA98    

 

• Cache line = 0001 

 



Associative Mapping Pros & Cons 

• Advantages: 

▫ Flexibility as to which block to replace when a new 
block is read into the cache.  

▫ It is designed to maximize the hit ratio.  

 

• Disadvantage: 

▫ The complex circuitry required to examine the 
tags of all cache lines in parallel.  



Set Associative Mapping 

• Cache is divided into a number of sets. 

• Each set contains a number of lines. 

• A given block maps to any line in a given set. 

▫ e.g. Block B can be in any line of set i. 

• e.g. 2 lines per set. 

▫ 2 way associative mapping. 

▫ A given block can be in one of 2 lines in only one 
set. 

 



Set Associative Mapping 

• The relationships are: 
   m = v * k 
     i = j modulo v 

 where 
i = cache set number 
j = main memory block number 
m = number of lines in the cache 
v = number of sets 
k = number of lines in each set  

• This is referred to as k-way set-associative 
mapping. 



mapped caches-v Associative 

• The next figure illustrates this mapping for the first v 
blocks of main memory.  

 

• For set-associative mapping, each word maps into all 
the cache lines in a specific set, so that main memory 
block B0 maps into set 0, and so on. 

 

• Thus, the set-associative cache can be physically 
implemented as v associative caches. 



mapped caches-v Associative  



k-way Associative-mapped caches or 

k Direct-mapped caches 

• It is also possible to implement the set-associative cache 

as k direct mapping caches as next figure.  

• Each direct-mapped cache is referred to as a way, 

consisting of v lines. The first v lines of main memory are 

direct mapped into the v lines of each way; the next group 

of v lines of main memory are similarly mapped, and so 

on.  

• The direct-mapped implementation is typically used for 

small degrees of associativity (small values of k) while the 

associative-mapped implementation is typically used for 

higher degrees of associativity. 



k-way Associative-mapped caches or 

k Direct-mapped caches 



• The cache control logic interprets a memory address as 

three fields: Tag, Set, and Word.  

 

• The d set bits specify one of  v = 2d sets.  

 

• The s bits of the Tag and Set fields specify one of the 2s 

blocks of main memory.  

 

• With fully associative mapping, the tag in a memory 

address is quite large and must be compared to the tag of 

every line in the cache. With k-way set-associative 

mapping, the tag in a memory address is much smaller and 

is only compared to the k tags within a single set. 



Set Associative Mapping Summary 

• Address length = (s + w) bits. 

• Number of addressable units = 2s+w words or bytes. 

• Block size = line size = 2w words or bytes. 

• Number of blocks in main memory = 2s+w / 2w = 2s. 

• Number of lines in set = k. 

• Number of sets = v = 2d. 

• Number of lines in cache = m = k*v = k * 2d. 

• Size of cache = k * 2d + w words or bytes. 

• Size of tag = (s – d) bits. 



K-Way Set Associative Cache Organization 



Set Associative Mapping Example 



Set Associative Mapping Address Structure 

• Use set field to determine cache set to look in. 

• Compare tag field to see if we have a hit. 

• e.g 

▫ Address Tag Data  Set number 

▫ 1FF 7FFC 1FF 12345678 1FFF 

▫ 001 7FFC 001 11223344 1FFF 

 

Tag  9 bit Set  13 bit 
Word 

2 bit 



Two Way Set Associative Mapping Example 



Direct and Set Associative Cache  

Performance Differences 

• Significant up to at least 64kB for 2-way. 

• Difference between 2-way and 4-way at 4kB 
much less than 4kB to 8kB. 

• Cache complexity increases with associativity. 

• Not justified against increasing cache to 8kB or 
16kB. 

• Above 32kB gives no improvement. 

• (simulation results). 

 

 



Figure 4.16 Varying Associativity over Cache 

Size 

0.0
1k

H
it

ra
tio

2k 4k 8k 16k

Cache size (bytes)

direct

2-way

4-way

8-way

16-way

32k 64k 128k 256k 512k 1M

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0



Replacement Algorithms  

Direct mapping 

• No choice. 

• Each block only maps to one line. 

• Replace that line. 



Replacement Algorithms  

Associative & Set Associative 

• To achieve high speed, such an algorithm must be 

implemented in hardware. 

 

• Once the cache has been filled, when a new block is brought 
into the cache, one of the existing blocks must be replaced. 

 

• The four most popular replacement algorithms:  

1. Least Recently used (LRU). 

2. First in first out (FIFO). 

3. Least frequently used (LFU). 

4. Random. 

 



Replacement Algorithms  

Associative & Set Associative 

1. Least Recently used (LRU) 
▫ Replace that block in the set that has been in the cache 

longest with no reference to it. 
▫ e.g. in 2 way set associative. 
 Which of the 2 block is LRU? 

2. First in first out (FIFO) 
▫ Replace block that has been in cache longest. 

3. Least frequently used (LFU) 
▫ Replace block which has had fewest hits. 

4. Random 
▫ to pick a line at random from among the candidate 

lines. 

 



Write Policy  

• When a block that is resident in the cache is to be replaced, 

there are two cases to consider: 

 

1. If the old block in the cache has not been altered, then it 

may be overwritten with a new block without first writing 

out the old block.  

 

2. If at least one write operation has been performed on a word 

in that line of the cache, then main memory must be 

updated by writing the line of cache out to the block of 

memory before bringing in the new block. A 



Write Policy – Some problems to contend with 

1. More than one device may have access to main 
memory. 

For example, an I/O module may be able to read-write 
directly to memory. If a word has been altered only in the 
cache, then the corresponding memory word is invalid.  

Further, if the I/O device has altered main memory, then the 
cache word is invalid.  

 

2. More complex problem occurs when multiple 
processors are attached to the same bus and each 
processor has its own local cache.  

Then, if a word is altered in one cache, it could invalidate a 
word in other caches. 

 



Write Policy – Some problems to contend with 

3.If data in one cache are altered, this invalidates not only the 

corresponding word in main memory, but also that same word 

in other caches (if any other cache happens to have that same 

word). 



Write through 

• All writes go to main memory as well as cache for 
ensuring that main memory is always valid. 

 

• Multiple CPUs can monitor main memory traffic to keep 
local (to CPU) cache up to date. 

 

• Lots of traffic. 

 

• Slows down writes. 

 

• Remember bogus write through caches! 



Write back 

• To minimizes memory writes. 

 

• With write back, updates are made only in the cache. When an 

update occurs, a dirty bit, or use bit, associated with the line is 

set. Then, when a block is replaced, it is written back to main 

memory if and only if the dirty bit is set. 

 

• Other caches get out of sync. 

 

• I/O must access main memory through cache. 

 



Line Size 

• Retrieve not only desired word but a number of adjacent words 
as well. 

• Increased block size will increase hit ratio at first. 
▫ the principle of locality. 

• Hit ratio will decreases as block becomes even bigger. 
▫ Probability of using newly fetched information becomes less 

than probability of reusing the information to be replaced. 
• Larger blocks 

▫ Reduce number of blocks that fit in cache. 
▫ Data overwritten shortly after being fetched. 
▫ Each additional word is less local so less likely to be needed. 

• No definitive optimum value has been found. 
• 8 to 64 bytes seems reasonable. 
 



Multilevel Caches 

• High logic density enables caches on chip. 
▫ Faster than bus access. 
▫ Frees bus for other transfers. 

• Common to use both on and off chip cache. 
▫ L1 on chip, L2 off chip in static RAM (SRAM). 
▫ L2 access much faster than DRAM or ROM. 
▫ L2 often uses separate data path. 
▫ L2 may now be on chip. 
▫ Resulting in L3 cache. 
 Bus access or now on chip… 



Hit Ratio (L1 & L2) For 8 kbytes and 16 kbyte L1 



Unified v Split Caches 

• One cache for data and instructions or two, one for data 

and one for instructions. 

• Advantages of unified cache: 

▫ Higher hit rate. 

 Balances load of instruction and data fetch. 

 Only one cache to design & implement. 

• Advantages of split cache: 

▫ Eliminates cache contention between instruction 

fetch/decode unit and execution unit. 

 Important in pipelining. 



Self-Study  
from page #158 



Pentium 4 Cache 

• 80386 – no on chip cache 
• 80486 – 8k using 16 byte lines and four way set associative 

organization 
• Pentium (all versions) – two on chip L1 caches 

▫ Data & instructions 
• Pentium III – L3 cache added off chip 
• Pentium 4 

▫ L1 caches 
 8k bytes 
 64 byte lines 
 four way set associative 

▫ L2 cache  
 Feeding both L1 caches 
 256k 
 128 byte lines 
 8 way set associative 

▫ L3 cache on chip 



Intel Cache Evolution 

Problem Solution 

Processor on which feature 

first appears 

External memory slower than the system bus. 
Add external cache using faster 

memory technology. 

 

386 

 

Increased processor speed results in external bus becoming a 

bottleneck for cache access. 

Move external cache on-chip, 

operating at the same speed as the 

processor. 

 

486 

 

Internal cache is rather small, due to limited space on chip 
Add external L2 cache using faster 

technology than main memory 

 

486 

 

Contention occurs when both the Instruction Prefetcher and 

the Execution Unit simultaneously require access to the 

cache. In that case, the Prefetcher is stalled while the 

Execution Unit’s data access takes place. 

Create separate data and instruction 

caches. 

 

Pentium 

 

Increased processor speed results in external bus becoming a 

bottleneck for L2 cache access. 

Create separate back-side bus that 

runs at higher speed than the main 

(front-side) external bus. The BSB is 

dedicated to the L2 cache. 

 

Pentium Pro 

 

Move L2 cache on to the processor 

chip. 

 

Pentium II 

 
Some applications deal with massive databases and must 

have rapid access to large amounts of data. The on-chip 

caches are too small. 

Add external L3 cache. 

 
Pentium III 

  

 Move L3 cache on-chip. 

 
Pentium 4 

 



Pentium 4 Block Diagram 



Pentium 4 Core Processor 

• Fetch/Decode Unit 
▫ Fetches instructions from L2 cache 
▫ Decode into micro-ops 
▫ Store micro-ops in L1 cache 

• Out of order execution logic 
▫ Schedules micro-ops 
▫ Based on data dependence and resources 
▫ May speculatively execute 

• Execution units 
▫ Execute micro-ops 
▫ Data from L1 cache 
▫ Results in registers 

• Memory subsystem 
▫ L2 cache and systems bus 



Pentium 4 Design Reasoning 

• Decodes instructions into RISC like micro-ops before L1 cache 
• Micro-ops fixed length 

▫ Superscalar pipelining and scheduling 
• Pentium instructions long & complex 
• Performance improved by separating decoding from scheduling & 

pipelining 
▫ (More later – ch14) 

• Data cache is write back 
▫ Can be configured to write through 

• L1 cache controlled by 2 bits in register 
▫ CD = cache disable 
▫ NW = not write through 
▫ 2 instructions to invalidate (flush) cache and write back then invalidate 

• L2 and L3 8-way set-associative  
▫ Line size 128 bytes 



ARM Cache Features 

Core Cache 

Type 

Cache Size (kB) Cache Line Size 

(words) 

Associativity Location Write Buffer 

Size (words) 

ARM720T Unified 8 4 4-way Logical 8 

ARM920T Split 16/16 D/I 8 64-way Logical 16 

ARM926EJ-S Split 4-128/4-128 D/I 8 4-way Logical 16 

ARM1022E Split 16/16 D/I 8 64-way Logical 16 

ARM1026EJ-S Split 4-128/4-128 D/I 8 4-way Logical 8 

Intel StrongARM Split 16/16 D/I 4 32-way Logical 32 

Intel Xscale Split 32/32 D/I 8 32-way Logical 32 

ARM1136-JF-S Split 4-64/4-64 D/I 8 4-way Physical 32 



ARM Cache Organization 

• Small FIFO write buffer 
▫ Enhances memory write performance 
▫ Between cache and main memory 
▫ Small c.f. cache 
▫ Data put in write buffer at processor clock speed 
▫ Processor continues execution 
▫ External write in parallel until empty 
▫ If buffer full, processor stalls 
▫ Data in write buffer not available until written 
 So keep buffer small 



ARM Cache and Write Buffer Organization 



Internet Sources 

• Manufacturer sites. 

▫ Intel 

▫ ARM 

• Search on cache. 


